71 research outputs found

    Application of Small Epigenetic Modulators in Pediatric Medulloblastoma

    Get PDF
    Medulloblastoma is one of the most frequent among pediatric brain tumors, and it has been classified in various subgroups. Some of them already benefit from quite good therapeutic options, whereas others urgently need novel therapeutic approaches. Epigenetic modulators have long been studied in various types of cancer. Within this review, we summarize the main preclinical studies regarding epigenetic targets (such as HDAC, SIRT, BET, EZH2, G9a, LSD1, and DNMT) inhibitors in medulloblastoma. Furthermore, we shed light on the increasing number of applications of drug combinations as well as hybrid compounds involving epigenetic mechanisms. Nevertheless, in the studies published so far, mainly un-specific or old modulators have been used, and the PKs (brain permeability) have not been well-evaluated. Thus, these findings should be considered as a starting point for further improvement and not as a final result

    Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs

    Get PDF
    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/ FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage

    Albumin nanoparticles for glutathione-responsive release of cisplatin: new opportunities for medulloblastoma treatment

    Get PDF
    Redox-responsive nanoparticles were synthesized by desolvation of bovine serum albumin followed by disulfide-bond crosslinking with N, Nʹ-Bis (acryloyl) cystamine. Dynamic light scattering and transmission electron microscopy studies revealed spherical nanoparticles (mean diameter: 83 nm, polydispersity index: 0.3) that were glutathione-responsive. Confocal microscopy revealed rapid, efficient internalization of the nanoparticles by Daoy medulloblastoma cells and healthy controls (HaCaT keratinocytes). Cisplatin-loaded nanoparticles with drug:carrier ratios of 5%, 10%, and 20% were tested in both cell lines. The formulation with the highest drug:carrier ratio reduced Daoy and HaCaT cell viability with IC50 values of 6.19 and 11.17 μg mL-1, respectively. The differential cytotoxicity reflects the cancer cells’ higher glutathione content, which triggers more extensive disruption of the disulfide bond-mediated intra-particle cross-links, decreasing particle stability and increasing their cisplatin release. These findings support continuing efforts to improve the safety and efficacy of antineoplastic drug therapy for pediatric brain tumors using selective nanoparticlebased drug delivery systems

    Circulating MicroRNAs in Elderly Type 2 Diabetic Patients

    Get PDF
    The circulating microRNAs (miRNAs) associated with type 2 diabetes (T2D) in elderly patients are still being defined. To identify novel miRNA biomarker candidates for monitoring responses to sitagliptin in such patients, we prospectively studied 40 T2D patients (age > 65) with HbA1c levels of 7.5–9.0% on metformin. After collection of baseline blood samples (t0), the dipeptidyl peptidase-IV (DPP-IV) inhibitor (DPP-IVi) sitagliptin was added to the metformin regimen, and patients were followed for 15 months. Patients with HbA1c0.5% after 3 and 15 months of therapy were classified as “responders” (group R, n = 34); all others were classified as “nonresponders” (group NR, n = 6). Circulating miRNA profiling was performed on plasma collected in each group before and after 15 months of therapy (t0 and t15). Intra- and intergroup comparison of miRNA profiles pinpointed three miRNAs that correlated with responses to sitagliptin: miR-378, which is a candidate biomarker of resistance to this DPP-IVi, and miR-126-3p and miR-223, which are associated with positive responses to the drug. The translational implications are as immediate as evident, with the possibility to develop noninvasive diagnostic tools to predict drug response and development of chronic complications

    MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs

    Get PDF
    Medulloblastoma (MB) is the most common malignant brain tumor of pediatric age and is characterized by cells expressing stem, astroglial, and neuronal markers. Among them, stem-like cells (hMB-SLCs) represent a fraction of the tumor cell population with the potential of self-renewal and proliferation and have been associated with tumor poor prognosis. In this context, microRNAs have been described as playing a pivotal role in stem cells differentiation. In our paper, we analyze microRNAs profile and genes expression of hMB-SLCs before and after Retinoic Acid- (RA-) induced differentiation. We aimed to identify pivotal players of specific pathways sustaining stemness and/or tumor development and progression and integrate the results of our recent proteomic study. Our results uncovered 22 differentially expressed microRNAs that were used as input together with deregulated genes and proteins in the Genomatix Pathway System (GePS) analysis revealing 3 subnetworks that could be interestingly involved in the maintenance of hMB-SLCs proliferation. Taken together, our findings highlight microRNAs, genes, and proteins that are significantly modulated in hMB-SLCs with respect to their RA-differentiated counterparts and could open new perspectives for prognostic and therapeutic intervention on MB

    Anandamide Suppresses Proliferation and Cytokine Release from Primary Human T-Lymphocytes Mainly via CB2 Receptors

    Get PDF
    Anandamide (AEA) is an endogenous lipid mediator that exerts several effects in the brain as well as in peripheral tissues. These effects are mediated mainly by two types of cannabinoid receptors, named CB(1)R and CB(2)R, making AEA a prominent member of the "endocannabinoid" family. Also immune cells express CB(1) and CB(2) receptors, and possess the whole machinery responsible for endocannabinoid metabolism. Not surprisingly, evidence has been accumulated showing manifold roles of endocannabinoids in the modulation of the immune system. However, details of such a modulation have not yet been disclosed in primary human T-cells.In this investigation we used flow cytometry and ELISA tests, in order to show that AEA suppresses proliferation and release of cytokines like IL-2, TNF-alpha and INF-gamma from activated human peripheral T-lymphocytes. However, AEA did not exert any cytotoxic effect on T-cells. The immunosuppression induced by AEA was mainly dependent on CB(2)R, since it could be mimicked by the CB(2)R selective agonist JWH-015, and could be blocked by the specific CB(2)R antagonist SR144528. Instead the selective CB(1)R agonist ACEA, or the selective CB(1)R antagonist SR141716, were ineffective. Furthermore, we demonstrated an unprecedented immunosuppressive effect of AEA on IL-17 production, a typical cytokine that is released from the unique CD4+ T-cell subset T-helper 17.Overall, our study investigates for the first time the effects of the endocannabinoid AEA on primary human T-lymphocytes, demonstrating that it is a powerful modulator of immune cell functions. In particular, not only we clarify that CB(2)R mediates the immunosuppressive activity of AEA, but we are the first to describe such an immunosuppressive effect on the newly identified Th-17 cells. These findings might be of crucial importance for the rational design of new endocannabinoid-based immunotherapeutic approaches

    Consequences of simulated microgravity in neural stem cells: biological effects and metabolic response.

    Get PDF
    Objective: Microgravity was often shown to cause cell damage and impair cell cycle in a variety of biological systems. Since the effects on the neural system were poorly investigated, we aimed to gain insight into how biological processes such as cell cycle, cell damage, stemness features and metabolic status are involved in neural stem cells (NSC) when they experience simulated microgravity. We also wished to investigate whether these modulations were transient or permanent once cells were returned to normal gravity. Methods: NSC were isolated from mouse cerebella and cultured in the Rotary Cell Culture System (RCCS) to model microgravity. We analyzed cell cycle, stress and apoptotic response. We also performed a 1H NMR-based metabolomic analysis and evaluation of stemness features of NSC in simulated microgravity and once in the returned to normogravity cell culture. Results: Biological processes and metabolic status were modulated by simulated microgravity. Cells were arrested in S-phase together with enhanced apoptosis. Metabolic changes occurred in NSC after simulated microgravity. Interestingly, these modulations were transient. Indeed, stemness features and metabolic footprint returned to basal levels after few days of culture in normal conditions. Moreover NSC clonogenic ability was not impaired. Conclusions: Our data suggest that simulated microgravity impacts on NSC biological processes, including cell cycle and apoptosis. However, NSC does not suffer from permanent damage

    β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells

    Get PDF
    Background Aberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and relapse, have been identified in SHH-MB. Since we previously demonstrated that Hh/Gli signaling controls CSCs features in SHH-MB and that in these tumors miR-326 is down regulated, here we investigated whether there is a functional link between Hh/Gli signaling and miR-326. Methods We evaluated β-arrestin1 (Arrb1) and its intragenic miR-326 levels in CSCs derived from SHH-MB. Subsequently, we modulated the expression of Arrb1 and miR-326 in CSCs in order to gain insight into their biological role. We also analyzed the mechanism by which Arrb1 and miR-326 control Hh/Gli signaling and self-renewal, using luciferase and protein immunoprecipitation assays. Results Low levels of Arrb1 and miR-326 represent a feature of CSCs derived from SHH-MB. We observed that re-expression of Arrb1 and miR-326 inhibits Hh/Gli signaling pathway at multiple levels, which cause impaired proliferation and self-renewal, accompanied by down regulation of Nanog levels. In detail, miR-326 negatively regulates two components of the Hh/Gli pathway the receptor Smoothened (Smo) and the transcription factor Gli2, whereas Arrb1 suppresses the transcriptional activity of Gli1, by potentiating its p300-mediated acetylation. Conclusions Our results identify a new molecular mechanism involving miR-326 and Arrb1 as regulators of SHH-MB CSCs. Specifically, low levels of Arrb1 and miR-326 trigger and maintain Hh/Gli signaling and self-renewal

    Loss of miR-107, miR-181c and miR-29a-3p promote activation of Notch2 signaling in pediatric high-grade gliomas (pHGGs)

    Get PDF
    The mechanisms by which microRNAs control pediatric high-grade gliomas (pHGGs) have yet to be fully elucidated. Our studies of patient-derived pHGG tissues and of the pHGG cell line KNS42 revealed down-regulation in these tumors of three microRNAs, specifically miR-107, miR-181c, and miR-29a-3p. This down-regulation increases the proliferation of KNS42 cells by de-repressing expression of the Notch2 receptor (Notch2), a validated target of miR-107 and miR-181c and a putative target of miR-29a-3p. Inhibition (either pharmacologic or genetic) of Notch2 or re-expression of the implicated microRNAs (all three combined but also individually) significantly reduced KNS42 cell proliferation. These findings suggest that Notch2 pathway activation plays a critical role in pHGGs growth and reveal a direct epigenetic mechanism that controls Notch2 expression, which could potentially be targeted by novel forms of therapy for these childhood tumors characterized by high-morbidity and high-mortality
    • …
    corecore